

Assessing the Effect of Machine Automation on Operator Heart and Breathing Rate During Mechanical Harvesting

Travis Esau¹, Craig MacEachern¹, Qamar Zaman¹, Aitazaz Farooque²

¹Dalhousie University, ²University of Prince Edward Island

Introduction

- Over 80% of wild blueberries are harvested mechanically
- Harvesting is a laborious task due to the near constant requirement for picking head height adjustment

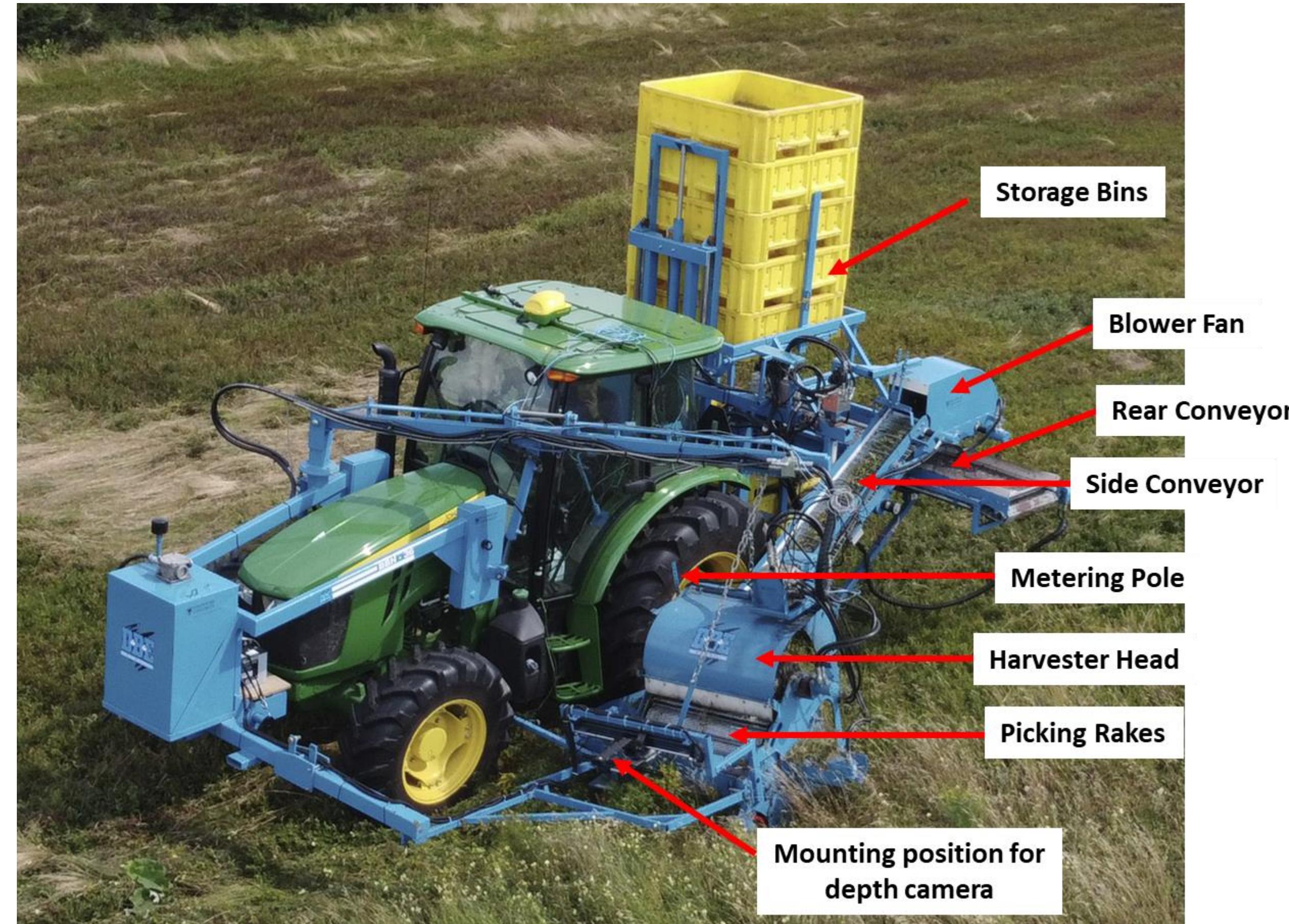


Fig. 1: Image of wild blueberry harvester actively harvesting

- Additionally, operators are required to steer the harvester, fill bins evenly, and change full bins
- This results in the operator's attention being pulled in three directions, increasing the potential for mistakes and yield reduction
- By incorporating automation in the form of autosteer and auto head adjustment, operator stress and fatigue can be reduced
- This should lead to fewer accidents and improved yields

Primary Objective

- Evaluate the effect of autosteer and auto head adjustment on harvester operator stress and fatigue
- Compare the differences in stress levels between new and skilled operators under manual, semi-automated and automated harvesting conditions

Methodology

- The study took place across two fields in 2021
- Both a new and skilled operator were assessed for how their heart and breathing rate varied across manual, semi, and fully automated harvesting conditions
- Heart and breathing rates were monitored using a Hexoskin wearable body metrics suit
- The following criteria define each of the harvesting conditions:
 - Manual – Traditional harvester setup with no automated aids
 - Semi-automated – Incorporating one of either autosteer or the automated head adjustment
 - Fully Automated - Incorporating both autosteer and automated head adjustment

Fig. 2: Hexoskin wearable body metrics suit

- Autosteering was achieved using John Deere's AutoTrac300, 4640 display and Starfire 6000 receiver
- Auto head height adjustment was achieved using a custom system based on 3D imagery and a blueberry detection neural network

Results and Conclusions

- Both the skilled and new operator found the manual steering and manual head adjustment combination to be the most demanding in terms of their heart and respiration rate
- Both the skilled and new operators saw significant reductions in heart and breathing rate as automation components were introduced

Tbl 1: Tukey's multiple comparison test on the significant two-way interaction for the responses of mean heart rate and mean respiration rate for both the skilled and new operator

Treatment Combination	*skilled operator*		*new operator*	
	Mean Heart Rate (bpm)	Mean Respiration Rate (rpm)	Mean Heart Rate (bpm)	Mean Respiration Rate (rpm)
AS_AH	62.74 d	13.84 c	89.08 c	8.98 d
AS_MH	65.24 b	18.26 a	87.37 d	16.21 c
MS_AH	63.81 c	15.29 b	91.83 b	18.12 b
MS_MH	67.08 a	18.34 a	97.61 a	20.41 a

AS = Autosteer, MS = Manual steering, AH = Auto head adjustment, MH = Manual head adjustment

Moving forward this study has the following goals:

- Assess additional new operators to observe the impact of the automation components
- Observe the effects of a newly developed head adjustment system
- Automate the bin loading system and observe the impact that has on operator stress and fatigue

Acknowledgements

The authors would like to thank Doug Bragg Enterprises Ltd, Natural Sciences and Engineering Research Council of Canada, New Brunswick Canadian Agricultural Partnership, and Wild Blueberry Producers Association of Nova Scotia for financial support to complete this project. The authors would also like to give thanks to the precision agriculture and mechanized systems research team for their help during data collection. Finally, special thanks to Engineering Co-op student Connor Mullins for his help in data collection and organization.